NDVI-Based Greening of Alpine Steppe and Its Relationships with Climatic Change and Grazing Intensity in the Southwestern Tibetan Plateau

Author:

Li YanORCID,Gong JieORCID,Zhang Yunxia,Gao Bingli

Abstract

Alpine vegetation on the Southwestern Tibetan Plateau (SWTP) is sensitive and vulnerable to climate change and human activities. Climate warming and human actions (mainly ecological restoration, social-economic development, and grazing) have already caused the degradation of alpine grasslands on the Tibetan Plateau (TP) to some extent. However, it remains unclear how human activities (mainly grazing) have regulated vegetation variation under climate change and ecological restoration since 2000. This study used the normalized difference vegetation index (NDVI) and social statistic data to explore the spatiotemporal changes and the relationship between the NDVI and climatic change, human activities, and grazing intensity. The results revealed that the NDVI increased by 0.006/10a from 2000 to 2020. Significant greening, mainly distributed in Rikaze, with partial browning, has been found in the SWTP. The correlation analysis results showed that precipitation is the most critical factor affecting the spatial distribution of NDVI, and the NDVI is correlated positively with temperature and precipitation in most parts of the SWTP. We found that climate change and human activities co-affected the vegetation change in the SWTP, and human activities leading to vegetation greening since 2000. The NDVI and grazing intensity were mainly negatively correlated, and the grazing caused vegetation degradation to some extent. This study provides practical support for grassland use, grazing management, ecological restoration, and regional sustainable development for the TP and similar alpine areas.

Funder

the Second Tibetan Plateau Scientific Expedition and Research

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3