Digital Mapping of Land Cover Changes Using the Fusion of SAR and MSI Satellite Data

Author:

Metrikaityte Guste,Suziedelyte Visockiene JurateORCID,Papsys Kestutis

Abstract

The aim of this article is to choose the most appropriate method for identifying and managing land cover changes over time. These processes intensify due to human activities such as agriculture, urbanisation and deforestation. The study is based in the remote sensing field. The authors used four different methods of satellite image segmentation with different data: Synthetic Aperture Radar (SAR) Sentinel-1 data, Multispectral Imagery (MSI) Sentinel-2 images and a fusion of these data. The images were preprocessed under segmentation by special algorithms and the European Space Agency Sentinel Application Platform (ESA SNAP) toolbox. The analysis was performed in the western part of Lithuania, which is characterised by diverse land use. The techniques applied during the study were: the coherence of two SAR images; the method when SAR and MSI images are segmented separately and the results of segmentation are fused; the method when SAR and MSI data are fused before land cover segmentation; and an upgraded method of SAR and MSI data fusion by adding additional formulas and index images. The 2018 and 2019 results obtained for SAR image segmentation differ from the MSI segmentation results. Urban areas are poorly identified because of the similarity of spectre signatures, where urban areas overlap with classes such as nonvegetation and/or sandy territories. Therefore, it is necessary to include the field surveys in the calculations in order to improve the reliability and accuracy of the results. The authors are of the opinion that the calculation of the additional indexes may help to enhance the visibility of vegetation and urban area classes. These indexes, calculated based on two or more different bands of multispectral images, would help to improve the accuracy of the segmentation results.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3