Research Progress of Steels for Nuclear Reactor Pressure Vessels

Author:

Zhou Linjun,Dai Jie,Li Yang,Dai Xin,Xie Changsheng,Li Linze,Chen Liansheng

Abstract

The nuclear reactor pressure vessel is an important component of a nuclear power plant. It has been used in harsh environments such as high temperature, high pressure, neutron irradiation, thermal aging, corrosion and fatigue for a long time, which puts forward higher standards for the performance requirements for nuclear pressure vessel steel. Based on the characteristics of large size and wall thickness of the nuclear pressure vessel, combined with its performance requirements, this work studies the problems of forging technology, mechanical properties, irradiation damage, corrosion failure, thermal aging behavior and fatigue properties, and summarizes the research progress of nuclear pressure vessel materials. The influencing factors of microstructures evolution and mechanism of mechanical properties change of nuclear pressure vessel steel are analyzed in this work. The mechanical properties before and after irradiation are compared, and the influence mechanisms of irradiation hardening and embrittlement are also summarized. Although the stainless steel will be surfacing on the inner wall of nuclear pressure vessel to prevent corrosion, long-term operation may cause aging or deterioration of stainless steel, resulting in corrosion caused by the contact between the primary circuit water environment and the nuclear pressure vessel steel. Therefore, the corrosion behavior of nuclear pressure vessels materials is also summarized in detail. Meanwhile, the evolution mechanism of the microstructure of nuclear pressure vessel materials under thermal aging conditions is analyzed, and the mechanisms affecting the mechanical properties are also described. In addition, the influence mechanisms of internal and external factors on the fatigue properties, fatigue crack initiation and fatigue crack propagation of nuclear pressure vessel steel are analyzed in detail from different perspectives. Finally, the development direction and further research contents of nuclear pressure vessel materials are prospected in order to improve the service life and ensure safe service in harsh environment.

Funder

the National Natural Science Foundation of China

Central Government Guided Local Science and Technology Development Project

Science and Technology Project of Tangshan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3