Sustainable New Technology for the Improvement of Metallic Materials for Future Energy Applications

Author:

Jovičević-Klug Patricia12ORCID,Rohwerder Michael1ORCID

Affiliation:

1. Group of Corrosion, Department of Interface Chemistry and Surface Engineering, Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Düsseldorf, Germany

2. Alexander von Humboldt PostDoc Research Fellow, Jean-Paul-Str. 12, 53173 Bonn, Germany

Abstract

The need for a more sustainable and accessible source of energy is increasing as human society advances. The use of different metallic materials and their challenges in current and future energy sectors are the primary focus of the first part of this review. Cryogenic treatment (CT), one of the possible solutions for an environmentally friendly, sustainable, and cost-effective technology for tailoring the properties of these materials, is the focus of second part of the review. CT was found to have great potential for the improvement of the properties of metallic materials and the extension of their service life. The focus of the review is on selected surface properties and corrosion resistance, which are under-researched and have great potential for future research and application of CT in the energy sector. Most research reports that CT improves corrosion resistance by up to 90%. This is based on the unique oxide formation that can provide corrosion protection and extend the life of metallic materials by up to three times. However, more research should be conducted on the surface resistance and corrosion resistance of metallic materials in future studies to provide standards for the application of CT in the energy sector.

Funder

Alexander von Humboldt Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3