Formation and Inhibition Mechanism of Na8SnSi6O18 during the Soda Roasting Process for Preparing Na2SnO3

Author:

Su Zijian,Liu Shuo,Han Benlai,Zhang Yuanbo,Jiang Tao

Abstract

To produce Na2SnO3, which is widely used in the ceramics and electroplating industries, a novel process for the preparation of sodium stannate from cassiterite concentrates was developed successfully by the authors’ group. It was found that sodium stannosilicate (Na8SnSi6O18) was easily formed due to the main gangue of quartz in cassiterite concentrates, which was almost insoluble and decreased the quality of Na2SnO3. The formation and transitions of Na8SnSi6O18 in the SnO2–SiO2–Na2CO3 system roasted under a CO–CO2 atmosphere were determined. The results indicated that the formation of Na8SnSi6O18 could be divided into two steps: SnO2 reacted with Na2CO3 to form Na2SnO3, and then Na2SnO3 was rapidly combined with SiO2 and Na2CO3 to form low melting point Na8SnSi6O18. In addition, Na8SnSi6O18 can be decomposed into Na2SiO3 and Na2SnO3 by using excess Na2CO3.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3