Predicting Habitat Suitability and Adaptation Strategies of an Endangered Endemic Species, Camellia luteoflora Li ex Chang (Ericales: Theaceae) under Future Climate Change

Author:

Rong Shutian1,Luo Pengrui23ORCID,Yi Hang1,Yang Xi1,Zhang Linhan1,Zeng Dan1,Wang Li1

Affiliation:

1. College of Life Sciences, Sichuan University, Chengdu 610065, China

2. CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

3. College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Camellia luteoflora Li ex Chang is an endangered plant endemic to the East Asian flora with high ornamental value as well as phylogenetic and floristic research value. Predicting the impact of climate change on its distribution and suitable habitat is crucial until scientific conservation measures are implemented. Based on seven environmental variables and 17 occurrence records, this study optimized the MaxEnt model using the kuenm data package to obtain the optimal parameter combinations (RM = 1.3, FC = LPT) and predicted the potential distribution pattern of C. luteoflora in various future periods. The results revealed that the mean diurnal range, temperature annual range, and precipitation of the wettest month were the influential factors determining the distribution pattern of C. luteoflora, contributing 60.2%, 14.4%, and 12.3% of the variability in the data, respectively. Under the current conditions, the area of suitable habitats for C. luteoflora was only about 21.9 × 104 km2. Overall, the suitable area around the C. luteoflora distribution points will shrink in a circular pattern in response to future global warming, but some potentially suitable distribution areas will expand and migrate to higher latitudes and the Hengduan Mountains region, representing a survival strategy for coping with climate change. It is hypothesized that the future climate refugia will be the highly suitable area and the Hengduan Mountains region. Furthermore, a retrospective validation method was employed to assess the reliability of the predictions and estimate the model’s predictive performance in the future. This study proposes a survival strategy and adaptation measures for C. luteoflora in response to climate change, and the proposed measures can be generalized for application in conservation planning and restoration processes. We also recommend that future studies incorporate factors such as the anthropogenic disturbances and associated socio-economic activities related to C. luteoflora into the model and to further predict the distribution pattern for C. luteoflora in response to historical climatic changes, tracing the evolutionary history of its population.

Funder

Research on artificial restoration techniques for PSESP Camellia luteoflora

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3