Climate Change May Pose Additional Threats to the Endangered Endemic Species Encalypta buxbaumioidea in China

Author:

Liao Yujia1,Song Xiaotong1,Ye Yanhui2,Gu Jiqi1,Wang Ruihong3,Zhuogabayong Zhuogabayong3,Zhao Dongping4,Shao Xiaoming12

Affiliation:

1. Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

2. Resources & Environment College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China

3. Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China

4. Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China

Abstract

Rare and endangered plant species (REPs) are important in biodiversity conservation, and some REPs with narrow habitats are facing serious challenges from climate change. Encalypta buxbaumioidea T. Cao, C, Gao & X, L. Bai is an endangered bryophyte species that is endemic to China. To explore the consequences of climate change on the geographic distribution of this endangered species, we used maximum entropy to predict the potential distribution of this species in China under current and three future scenarios (RCP 2.6, RCP 4.5, and RCP 8.5) of two time periods (2050 and 2070) in China and assessed its conservation gaps. Twelve species occurrence sites and nine environmental variables were used in the modeling process. The results show that E. buxbaumioidea distribution is affected mainly by the annual mean temperature, isothermality, precipitation of the coldest quarter, and NDVI. According to species response curves, this species preferred habitats with annual mean temperature from −3 to 6 °C, precipitation of the coldest quarter from 14 to 77 mm, isothermality of more than 70%, and NDVI in the second quarter from 0.15 to 0.68. Currently, the most suitable habitat for this species is mainly distributed in the Qinghai–Tibet plateau, which is about 1.97 × 105 km2. The range would sharply reduce to 0.13–0.56% under future climate change. Nature reserves overlap with only 7.32% of the current distribution and would cover a much less portion of the area occupied by the species in the future scenarios, which means the current protected areas network is insufficient. Our results show that endangered bryophyte species are susceptible to environmental stress, especially climate change; therefore, the habitats of bryophytes should be taken into account when it comes to setting up protected areas.

Funder

National Natural Science Foundation of China

The Flexible Talent Support Project of Tibet Agricultural and Animal Husbandry University

The Joint Scientific Research Fund Project of China Agricultural University-Tibet Agricultural and Animal Husbandry University, Chinese Universities Scientific Fund

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3