Wafer-Level Vacuum-Packaged Translatory MEMS Actuator with Large Stroke for NIR-FT Spectrometers

Author:

Sandner Thilo,Gaumont Eric,Graßhoff Thomas,Rieck Andreas,Seifert TobiasORCID,Auböck Gerald,Grahmann Jan

Abstract

We present a wafer-level vacuum-packaged (WLVP) translatory micro-electro-mechanical system (MEMS) actuator developed for a compact near-infrared-Fourier transform spectrometer (NIR-FTS) with 800–2500 nm spectral bandwidth and signal-nose-ratio (SNR) > 1000 in the smaller bandwidth range (1200–2500 nm) for 1 s measuring time. Although monolithic, highly miniaturized MEMS NIR-FTSs exist today, we follow a classical optical FT instrumentation using a resonant MEMS mirror of 5 mm diameter with precise out-of-plane translatory oscillation for optical path-length modulation. Compared to highly miniaturized MEMS NIR-FTS, the present concept features higher optical throughput and resolution, as well as mechanical robustness and insensitivity to vibration and mechanical shock, compared to conventional FTS mirror drives. The large-stroke MEMS design uses a fully symmetrical four-pantograph suspension, avoiding problems with tilting and parasitic modes. Due to significant gas damping, a permanent vacuum of ≤3.21 Pa is required. Therefore, an MEMS design with WLVP optimization for the NIR spectral range with minimized static and dynamic mirror deformation of ≤100 nm was developed. For hermetic sealing, glass-frit bonding at elevated process temperatures of 430–440 °C was used to ensure compatibility with a qualified MEMS processes. Finally, a WLVP MEMS with a vacuum pressure of ≤0.15 Pa and Q ≥ 38,600 was realized, resulting in a stroke of 700 µm at 267 Hz for driving at 4 V in parametric resonance. The long-term stability of the 0.2 Pa interior vacuum was successfully tested using a Ne fine-leakage test and resulted in an estimated lifetime of >10 years. This meets the requirements of a compact NIR-FTS.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3