Hierarchical Trajectory Planning for Narrow-Space Automated Parking with Deep Reinforcement Learning: A Federated Learning Scheme

Author:

Yuan Zheng1ORCID,Wang Zhe2,Li Xinhang1,Li Lei1ORCID,Zhang Lin1

Affiliation:

1. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, 10 Xitucheng Road, Haidian Distinct, Beijing 100876, China

2. Centre for Telecommunications Research, King’s College London, London WC2R 2LS, UK

Abstract

Collision-free trajectory planning in narrow spaces has become one of the most challenging tasks in automated parking scenarios. Previous optimization-based approaches can generate accurate parking trajectories, but these methods cannot compute feasible solutions with extremely complex constraints in a limited time. Recent research uses neural-network-based approaches that can generate time-optimized parking trajectories in linear time. However, the generalization of these neural network models in different parking scenarios has not been considered thoroughly and the risk of privacy compromise exists in the case of centralized training. To address the above issues, this paper proposes a hierarchical trajectory planning method with deep reinforcement learning in the federated learning scheme (HALOES) to rapidly and accurately generate collision-free automated parking trajectories in multiple narrow spaces. HALOES is a federated learning based hierarchical trajectory planning method to fully exert high-level deep reinforcement learning and the low-level optimization-based approach. HALOES further fuse the deep reinforcement learning model parameters to improve the generalization capabilities with a decentralized training scheme. The federated learning scheme in HALOES aims to protect the privacy of the vehicle’s data during model parameter aggregation. Simulation results show that the proposed method can achieve efficient automatic parking in multiple narrow spaces, improve planning time from 12.15% to 66.02% compared to other state-of-the-art methods (e.g., hybrid A*, OBCA) and maintain the same level of trajectory accuracy while having great model generalization.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Beijing Municipal Science & Technology Commission

Engineering Research Center of Information Networks, Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3