Abstract
Symptom occurrence at the first ingestion suggests that food allergy may result from earlier sensitization via non-oral routes. We aimed to characterize the cellular populations recruited at various mucosal and immune sites after experimental sensitization though different routes. BALB/cJ mice were exposed to a major allergenic food (peanut) mixed with cholera toxin via the intra-gastric (i.g.), respiratory, cutaneous, or intra-peritoneal (i.p.) route. We assessed sensitization and elicitation of the allergic reaction and frequencies of T cells, innate lymphoid cells (ILC), and inflammatory and dendritic cells (DC) in broncho-alveolar lavages (BAL), lungs, skin, intestine, and various lymph nodes. All cellular data were analyzed through non-supervised and supervised uni/multivariate analysis. All exposure routes, except cutaneous, induced sensitization, but intestinal allergy was induced only in i.g.- and i.p.-exposed mice. Multivariate analysis of all cellular constituents did not discriminate i.g. from control mice. Conversely, respiratory-sensitized mice constituted a distinct cluster, characterized by high local inflammation and immune cells recruitment. Those mice also evidenced changes in ILC frequencies at distant site (intestine). Despite absence of sensitization, cutaneous-exposed mice evidenced comparable changes, albeit less intense. Our study highlights that the initial route of sensitization to a food allergen influences the nature of the immune responses at various mucosal sites. Interconnections of mucosal immune systems may participate in the complexity of clinical manifestations as well as in the atopic march.
Subject
Food Science,Nutrition and Dietetics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献