Determination of Forest Structure from Remote Sensing Data for Modeling the Navigation of Rescue Vehicles

Author:

Rybansky MarianORCID

Abstract

One of the primary purposes of forest fire research is to predict crisis situations and, also, to optimize rescue operations during forest fires. The research results presented in this paper provide a model of Cross-Country Mobility (CCM) of fire brigades in forest areas before or during a fire. In order to develop a methodology of rescue vehicle mobility in a wooded area, the structure of a forest must first be determined. We used a Digital Surface Model (DSM) and Digital Elevation Model (DEM) to determine the Canopy Height Model (CHM). DSM and DEM data were scanned by LiDAR. CHM data and field measurements were used for determining the approximate forest structure (tree height, stem diameters, and stem spacing between trees). Due to updating the CHM and determining the above-mentioned forest structure parameters, tree growth equations and vegetation growth curves were used. The approximate forest structure with calculated tree density (stem spacing) was used for modeling vehicle maneuvers between the trees. Stem diameter data were used in cases where it was easier for the vehicle to override the trees rather than maneuver between them. Although the results of this research are dependent on the density and quality of the input LiDAR data, the designed methodology can be used for modeling the optimal paths of rescue vehicles across a wooded area during forest fires.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3