Improving the Accuracy of Random Forest Classifier for Identifying Burned Areas in the Tangier-Tetouan-Al Hoceima Region Using Google Earth Engine

Author:

Badda Houda1,Cherif El Khalil234ORCID,Boulaassal Hakim1,Wahbi Miriam1,Yazidi Alaoui Otmane1ORCID,Maatouk Mustapha1,Bernardino Alexandre2ORCID,Coren Franco3,El Kharki Omar1

Affiliation:

1. Geomatics, Remote Sensing and Cartography Unit FSTT, Abdelmalek Essaadi University, Tetouan 93000, Morocco

2. Institute for Systems and Robotics (ISR), Insituto Superior Technico, 1049-001 Lisbon, Portugal

3. National Institute of Oceanography and Applied Geophysics (OGS), Centre for Management of Maritime Infrastructure (CGN), Borgo Grotta Gigante 42/C, 34010 Sgonico Trieste, Italy

4. MARETEC—Marine, Environment and Technology Center, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Abstract

Forest fires have become a major concern in the northern parts of Morocco, particularly in the Tangier-Tetouan-Al Hoceima (TTA) region, causing significant damage to the environment and human lives. To address this pressing issue, this study proposes an approach that utilizes remote sensing (RS) and machine learning (ML) techniques to detect burned areas in the TTA region within the Google Earth Engine platform. The study focuses on burned areas resulting from forest fires in three specific locations in the TTA region that have experienced such fires in recent years, namely Tangier-Assilah in 2017, M’diq Fnideq in 2020, and Chefchaouen in 2021. In our study, we extensively explored multiple combinations of spectral indices, such as normalized burn ratio (dNBR), normalized difference vegetation index (dNDVI), soil-adjusted vegetation index (dSAVI), and burned area index (dBAI), in conjunction with Sentinel-2 (S2) satellite images. These combinations were employed within the Random Forest (RF) algorithm, allowing us to draw important conclusions. Initially, we assess the individual effectiveness of the dNBR index, which yields accuracy rates of 83%, 90%, and 82% for Tangier-Assilah, Chefchaouen, and M’diq Fnideq, respectively. Recognizing the need for improved outcomes, we expand our analysis by incorporating spectral indices and S2 bands. However, the results obtained from this expanded combination lack consistency and stability across different locations. While Tangier-Assilah and M’diq Fnideq experience accuracy improvements, reaching 95% and 88%, respectively, the inclusion of Sentinel bands has an adverse effect on Chefchaouen, resulting in a decreased accuracy of 87%. To achieve optimal accuracy, our focus shifted towards the combination of dNBR and the other spectral indices. The results were truly remarkable, with accuracy rates of 96%, 97%, and 97% achieved for Tangier-Assilah, Chefchaouen, and M’diq Fnideq, respectively. Our decision to prioritize the spectral indices was based on the feature importance method, which highlights the significance of each feature in the classification process. The practical implications of our study extend to fire management and prevention in the TTA region. The insights gained from our analysis can inform the development of effective policies and strategies to mitigate the impact of forest fires. By harnessing the potential of RS and ML techniques, along with the utilization of spectral indices, we pave the way for enhanced fire monitoring and response capabilities in the region.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3