Robot-Agnostic Interaction Controllers Based on ROS

Author:

Storiale FedericaORCID,Ferrentino EnricoORCID,Chiacchio PasqualeORCID

Abstract

In robotized industrial scenarios, the need for efficiency and flexibility is increasing, especially when tasks must be executed in dangerous environments and/or require the simultaneous manipulation of dangerous/fragile objects by multiple heterogeneous robots. However, the underlying hardware and software architecture is typically characterized by constraints imposed by the robots’ manufacturers, which complicates their integration and deployment. This work aims to demonstrate that widely used algorithms for robotics, such as interaction control, can be made independent of the hardware architecture, abstraction level, and functionality provided by the low-level proprietary controllers. As a consequence, a robot-independent control framework can be devised, which reduces the time and effort needed to configure the robotic system and adapt it to changing requirements. Robot-agnostic interaction controllers are implemented on top of the Robot Operating System (ROS) and made freely available to the robotic community. Experiments were performed on the Universal Robots UR10 research robot, the Comau Smart-Six industrial robot, and their digital twins, so as to demonstrate that the proposed control algorithms can be easily deployed on different hardware and simulators without reprogramming.

Funder

Ministry of University and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3