Generative Adversarial Networks for Zero-Shot Remote Sensing Scene Classification

Author:

Li Zihao,Zhang Daobing,Wang Yang,Lin Daoyu,Zhang Jinghua

Abstract

Deep learning-based methods succeed in remote sensing scene classification (RSSC). However, current methods require training on a large dataset, and if a class does not appear in the training set, it does not work well. Zero-shot classification methods are designed to address the classification for unseen category images in which the generative adversarial network (GAN) is a popular method. Thus, our approach aims to achieve the zero-shot RSSC based on GAN. We employed the conditional Wasserstein generative adversarial network (WGAN) to generate image features. Since remote sensing images have inter-class similarity and intra-class diversity, we introduced classification loss, semantic regression module, and class-prototype loss to constrain the generator. The classification loss was used to preserve inter-class discrimination. We used the semantic regression module to ensure that the image features generated by the generator can represent the semantic features. We introduced class-prototype loss to ensure the intra-class diversity of the synthesized image features and avoid generating too homogeneous image features. We studied the effect of different semantic embeddings for zero-shot RSSC. We performed experiments on three datasets, and the experimental results show that our method performs better than the state-of-the-art methods in zero-shot RSSC in most cases.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RSZero-CSAT: Zero-Shot Scene Classification in Remote Sensing Imagery using a Cross Semantic Attribute-guided Transformer;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Vision-Language Models in Remote Sensing: Current progress and future trends;IEEE Geoscience and Remote Sensing Magazine;2024-06

3. Zero-Shot Remote Sensing Scene Classification Method Based on Local-Global Feature Fusion and Weight Mapping Loss;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Review of Zero-Shot Remote Sensing Image Scene Classification;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

5. Noisy Remote Sensing Scene Classification via Progressive Learning Based on Multiscale Information Exploration;Remote Sensing;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3