Noisy Remote Sensing Scene Classification via Progressive Learning Based on Multiscale Information Exploration

Author:

Tang Xu1ORCID,Du Ruiqi1,Ma Jingjing1,Zhang Xiangrong1ORCID

Affiliation:

1. School of Artificial Intelligence, Xidian University, Xi’an 710071, China

Abstract

Remote sensing (RS) scene classification has always attracted much attention as an elemental and hot topic in the RS community. In recent years, many methods using convolutional neural networks (CNNs) and other advanced machine-learning techniques have been proposed. Their performance is excellent; however, they are disabled when there are noisy labels (i.e., RS scenes with incorrect labels), which is inevitable and common in practice. To address this problem, some specific RS classification models have been developed. Although feasible, their behavior is still limited by the complex contents of RS scenes, excessive noise filtering schemes, and intricate noise-tolerant learning strategies. To further enhance the RS classification results under the noisy scenario and overcome the above limitations, in this paper we propose a multiscale information exploration network (MIEN) and a progressive learning algorithm (PLA). MIEN involves two identical sub-networks whose goals are completing the classification and recognizing possible noisy RS scenes. In addition, we develop a transformer-assistive multiscale fusion module (TAMSFM) to enhance MIEN’s behavior in exploring the local, global, and multiscale contents within RS scenes. PLA encompasses a dual-view negative-learning (DNL) stage, an adaptively positive-learning (APL) stage, and an exhaustive soft-label-learning (ESL) stage. Their aim is to learn the relationships between RS scenes and irrelevant semantics, model the links between clean RS scenes and their labels, and generate reliable pseudo-labels. This way, MIEN can be thoroughly trained under the noisy scenario. We simulate noisy scenarios and conduct extensive experiments using three public RS scene data sets. The positive experimental results demonstrate that our MIEN and PLA can fully understand RS scenes and resist the negative influence of noisy samples.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3