Classification of Radar Targets with Micro-Motion Based on RCS Sequences Encoding and Convolutional Neural Network

Author:

Xu Xuguang,Feng Cunqian,Han LixunORCID

Abstract

Radar cross section (RCS) sequences, an easy-to-obtain target feature with small data volume, play a significant role in radar target classification. However, radar target classification based on RCS sequences has the shortcomings of limited information and low recognition accuracy. In order to overcome the shortcomings of RCS-based methods, this paper proposes a spatial micro-motion target classification method based on RCS sequences encoding and convolutional neural network (CNN). First, we establish the micro-motion models of spatial targets, including precession, swing and rolling. Second, we introduce three approaches for encoding RCS sequences as images. These three types of images are Gramian angular field (GAF), Markov transition field (MTF) and recurrence plot (RP). Third, a multi-scale CNN is developed to classify those RCS feature maps. Finally, the experimental results demonstrate that RP is best at reflecting the characteristics of the target among those three encoding methods. Moreover, the proposed network outperforms other existing networks with the highest classification accuracy.

Funder

the Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3