Space Targets with Micro-Motion Classification Using Complex-Valued GAN and Kinematically Sifted Methods

Author:

Han Lixun1ORCID,Feng Cunqian1,Hu Xiaowei1

Affiliation:

1. Air and Missile Defense College, Air Force Engineering University, Xi’an 710038, China

Abstract

Space target classification based on micro-motion characteristics has become a subject of great interest in the field of radar, particularly when using deep learning techniques. However, in practical applications, the ability of deep learning is hampered by the available radar datasets. As a result, obtaining a sufficient amount of the training dataset is a daunting challenge. To address this issue, this paper presents a novel framework for space target classification, consisting of three distinct modules: dataset generation, the kinematically sifted module, and classification. Initially, the micro-motion model of cone-shaped space targets is constructed to analyze target characteristics. Subsequently, the dataset generation module employs a complex-valued generative adversarial network (CV-GAN) to generate a large number of time-range maps. These maps serve as the foundation for training the subsequent modules. Next, the kinematically sifted module is introduced to eliminate images that do not align with the micro-motion characteristics of space targets. By filtering out incompatible images, the module ensures that only relevant and accurate dataset is utilized for further analysis. Finally, the classification model is constructed using complex-valued parallel blocks (CV-PB) to extract valuable information from the target. Experimental results validate the effectiveness of the proposed framework in space micro-motion target classification. The main contribution of the framework is to generate a sufficient amount of high-quality training data that conforms to motion characteristics, and to achieve accurate classification of space targets based on their micro-motion signatures. This breakthrough has significant implications for various applications in space target classification.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

The Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extraction of parameters of ballistic targets based on angle doppler and line doppler;Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2024);2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3