Efficient Resource Allocation for Backhaul-Aware Unmanned Air Vehicles-to-Everything (U2X)

Author:

Gupta TakshiORCID,Arena FabioORCID,You IlsunORCID

Abstract

Unmanned aerial vehicles (UAVs) allow better coverage, enhanced connectivity, and elongated lifetime when used in telecommunications. However, these features are predominately affected by the policies used for sharing resources amongst the involved nodes. Moreover, the architecture and deployment strategies also have a considerable impact on their functionality. Recently, many researchers have suggested using layer-based UAV deployment, which allows better communications between the entities. Regardless of these solutions, there are a limited number of studies which focus on connecting layered-UAVs to everything (U2X). In particular, none of them have actually addressed the aspect of resource allocation. This paper considers the issue of resource allocation and helps decide the optimal number of transfers amongst the UAVs, which can conserve the maximum amount of energy while increasing the overall probability of resource allocation. The proposed approach relies on mutual-agreement based reward theory, which considers Minkowski distance as a decisive metric and helps attain efficient resource allocation for backhaul-aware U2X. The effectiveness of the proposed solution is demonstrated using Monte-Carlo simulations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3