Efficient optimization techniques for resource allocation in UAVs mission framework

Author:

Razzaq Sohail,Xydeas Costas,Mahmood Anzar,Ahmed Saeed,Ratyal Naeem Iqbal,Iqbal JamshedORCID

Abstract

This paper considers the generic problem of a central authority selecting an appropriate subset of operators in order to perform a process (i.e. mission or task) in an optimized manner. The subset is selected from a given and usually large set of ‘n’ candidate operators, with each operator having a certain resource availability and capability. This general mission performance optimization problem is considered in terms of Unmanned Aerial Vehicles (UAVs) acting as firefighting operators in a fire extinguishing mission and from a deterministic and a stochastic algorithmic point of view. Thus the applicability and performance of certain computationally efficient stochastic multistage optimization schemes is examined and compared to that produced by corresponding deterministic schemes. The simulation results show acceptable accuracy as well as useful computational efficiency of the proposed schemes when applied to the time critical resource allocation optimization problem. Distinguishing features of this work include development of a comprehensive UAV firefighting mission framework, development of deterministic as well as stochastic resource allocation optimization techniques for the mission and development of time-efficient search schemes. The work presented here is also useful for other UAV applications such as health care, surveillance and security operations as well as for other areas involving resource allocation such as wireless communications and smart grid.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference34 articles.

1. Robust optimization of large-scale systems;John M Mulvey;Operations research,1995

2. Kouvelis, P. and Yu, G. Robust discrete optimization and its applications. London: George Alien & Unwin Ltd. Berlin, Heidelberg and New York: Springer-Verlag.; 1970.

3. Robust discrete optimization and network flows;D Bertsimas;Mathematical programming,2003

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3