Abstract
Human action recognition (HAR) is the foundation of human behavior comprehension. It is of great significance and can be used in many real-world applications. From the point of view of human kinematics, the coordination of limbs is an important intrinsic factor of motion and contains a great deal of information. In addition, for different movements, the HAR algorithm provides important, multifaceted attention to each joint. Based on the above analysis, this paper proposes a HAR algorithm, which adopts two attention modules that work together to extract the coordination characteristics in the process of motion, and strengthens the attention of the model to the more important joints in the process of moving. Experimental data shows these two modules can improve the recognition accuracy of the model on the public HAR dataset (NTU-RGB + D, Kinetics-Skeleton).
Funder
the key special project of the National Key R&D Program
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献