Multi‐scale skeleton simplification graph convolutional network for skeleton‐based action recognition

Author:

Zhang Fan1ORCID,Chongyang Ding1,Liu Kai1,Hongjin Liu2

Affiliation:

1. School of Computer Science and Technology Xidian University Xi'an China

2. SunWise Space Technology Beijing China

Abstract

AbstractHuman action recognition based on graph convolutional networks (GCNs) is one of the hotspots in computer vision. However, previous methods generally rely on handcrafted graph, which limits the effectiveness of the model in characterising the connections between indirectly connected joints. The limitation leads to weakened connections when joints are separated by long distances. To address the above issue, the authors propose a skeleton simplification method which aims to reduce the number of joints and the distance between joints by merging adjacent joints into simplified joints. Group convolutional block is devised to extract the internal features of the simplified joints. Additionally, the authors enhance the method by introducing multi‐scale modelling, which maps inputs into sequences across various levels of simplification. Combining with spatial temporal graph convolution, a multi‐scale skeleton simplification GCN for skeleton‐based action recognition (M3S‐GCN) is proposed for fusing multi‐scale skeleton sequences and modelling the connections between joints. Finally, M3S‐GCN is evaluated on five benchmarks of NTU RGB+D 60 (C‐Sub, C‐View), NTU RGB+D 120 (X‐Sub, X‐Set) and NW‐UCLA datasets. Experimental results show that the authors’ M3S‐GCN achieves state‐of‐the‐art performance with the accuracies of 93.0%, 97.0% and 91.2% on C‐Sub, C‐View and X‐Set benchmarks, which validates the effectiveness of the method.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3