Improved Faster R-CNN Traffic Sign Detection Based on a Second Region of Interest and Highly Possible Regions Proposal Network

Author:

Shao FamingORCID,Wang Xinqing,Meng Fanjie,Zhu Jingwei,Wang DongORCID,Dai Juying

Abstract

Traffic sign detection systems provide important road control information for unmanned driving systems or auxiliary driving. In this paper, the Faster region with a convolutional neural network (R-CNN) for traffic sign detection in real traffic situations has been systematically improved. First, a first step region proposal algorithm based on simplified Gabor wavelets (SGWs) and maximally stable extremal regions (MSERs) is proposed. In this way, the region proposal a priori information is obtained and will be used for improving the Faster R-CNN. This part of our method is named as the highly possible regions proposal network (HP-RPN). Second, in order to solve the problem that the Faster R-CNN cannot effectively detect small targets, a method that combines the features of the third, fourth, and fifth layers of VGG16 to enrich the features of small targets is proposed. Third, the secondary region of interest method to enhance the feature of detection objects and improve the classification capability of the Faster R-CNN is proposed. Finally, a method of merging the German traffic sign detection benchmark (GTSDB) and Chinese traffic sign dataset (CTSD) databases into one larger database to increase the number of database samples is proposed. Experimental results show that our method improves the detection performance, especially for small targets.

Funder

National Natural Science Foundation of China

Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3