Performance Analysis of Picking Path Strategies in Chevron Layout Warehouse

Author:

Liu HuweiORCID,Wang FanORCID,Zhao JunhuiORCID,Yang JianglongORCID,Tan ChunqiaoORCID,Zhou LiORCID

Abstract

Order picking is the part with the highest proportion of operation cost and time in the warehouse. The characteristics of small-batch and multi-frequency current orders reduce the applicability of the traditional layout in the warehouse. Besides this, the improvement of the layout will also affect the picking path, such as the Chevron warehouse layout, and at present, there is a lack of research on order picking with multiple picking locations under non-traditional layouts. In order to minimize the order picking cost and time, and expand the research in this field, this paper selects the Chevron layout to design and describe the warehouse layout, constructs the picking walking distance model of Return-type, S-type and Mixed-type path strategies in the random storage Chevron layout warehouse, and uses the Cuckoo Search (CS) algorithm to solve the picking walking distance generated by the Mixed-type path. Compared with the existing single-command order picking research, the order picking problem of multi picking locations is more suitable for the reality of e-commerce warehouses. Moreover, numerical experiments are carried out on the above three path strategies to study the impact of different walking paths on the picking walking distance, and the performance of different path strategies is evaluated by comparing the order picking walking distance with the different number of locations to be picked. The results show that, among the three path strategies, the Mixed-type path strategy is better than the Return-type path strategy, and the average optimization proportion is higher than 20%. When the number of locations to be picked is less than 36, the Mixed-type path is better than the S-type path. With the increase of the number of locations to be picked, the Mixed-type path is gradually worse than the S-type path. When the number of locations to be picked is less than 5, the Return-type path is better than the S-type path. With the increase of the number of locations to be picked in the order, the S-type path is gradually better than the Return-type path.

Funder

Beijing Social Science Foundation key project

Beijing Intelligent Logistics System Collaborative Innovation Center

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3