Optimizing Rack Locations in the Mobile-Rack Picking System: A Method of Integrating Rack Heat and Relevance

Author:

Zhai Mengyue1ORCID,Wang Zheng1

Affiliation:

1. School of Maritime Economics and Management, Dalian Maritime University, Dalian 116025, China

Abstract

The flexible movement of racks in the mobile-rack picking system (MRPS) significantly improves the picking efficiency of e-commerce orders with the characteristics of “one order multi–items” and creates a challenging problem of how to place racks in the warehouse. This is because the placement of each rack in the MRPS directly influences the distance that racks need to be moved during order picking, which in turn affects the order picking efficiency. To handle the rack location optimization problem (RLOP), this work introduces a novel idea and methodology, taking into account the heat degree and the relevance degree of racks, to enhance the efficiency of rack placements in the MRPS. Specifically, a two-stage solution strategy is implemented. In stage 1, an integer programming model (Model 1) is developed to determine the heat and relevance degree of racks, and it can be solved quickly by the Gurobi. Stage 2 entails developing a bi-objective integer programming model (Model 2) with the objective to minimize the travel distances of robots in both heavy load and no-load conditions, using the rack heat and relevance degree as inputs. In light of the challenge of decision coupling and the vast solution space in stage 2, we innovatively propose two lower bounds by slacking off the distance between storage locations. A matheuristic algorithm based on Benders decomposition (MABBD) is designed, which utilizes Benders-related rules to reconstruct Model 2, introduces an enhanced cut and an improved optimal cut with RLOP characteristics, and designs the warm start strategy and the master variable fixed strategy. Given the substantial size of real-life problems, the Memetic algorithm (MA) is specifically devised to address them. Instances of varying sizes are also employed to validate the science and efficacy of the model and algorithm.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3