A Rapid Alkalinization Factor-like Peptide EaF82 Impairs Tapetum Degeneration during Pollen Development through Induced ATP Deficiency

Author:

Hung Chiu-Yueh1ORCID,Kittur Farooqahmed S.1,Wharton Keely N.1,Umstead Makendra L.1,Burwell D’Shawna B.1,Thomas Martinique1,Qi Qi1,Zhang Jianhui1,Oldham Carla E.1,Burkey Kent O.2ORCID,Chen Jianjun3ORCID,Xie Jiahua1

Affiliation:

1. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA

2. USDA-ARS Plant Science Research Unit and Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA

3. Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA

Abstract

In plants, the timely degeneration of tapetal cells is essential for providing nutrients and other substances to support pollen development. Rapid alkalinization factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth, as well as defense against biotic and abiotic stresses. However, the functions of most of them remain unknown, while no RALF has been reported to involve tapetum degeneration. In this study, we demonstrated that a novel cysteine-rich peptide, EaF82, isolated from shy-flowering ‘Golden Pothos’ (Epipremnum aureum) plants, is a RALF-like peptide and displays alkalinizing activity. Its heterologous expression in Arabidopsis delayed tapetum degeneration and reduced pollen production and seed yields. RNAseq, RT-qPCR, and biochemical analyses showed that overexpression of EaF82 downregulated a group of genes involved in pH changes, cell wall modifications, tapetum degeneration, and pollen maturation, as well as seven endogenous Arabidopsis RALF genes, and decreased proteasome activity and ATP levels. Yeast two-hybrid screening identified AKIN10, a subunit of energy-sensing SnRK1 kinase, as its interacting partner. Our study reveals a possible regulatory role for RALF peptide in tapetum degeneration and suggests that EaF82 action may be mediated through AKIN10 leading to the alteration of transcriptome and energy metabolism, thereby causing ATP deficiency and impairing pollen development.

Funder

National Science Foundation

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3