Development of an Automated Online Flow Cytometry Method to Quantify Cell Density and Fingerprint Bacterial Communities

Author:

López-Gálvez Juan1,Schiessl Konstanze2,Besmer Michael D.2,Bruckmann Carmen1,Harms Hauke1,Müller Susann1ORCID

Affiliation:

1. Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany

2. onCyt Microbiology AG, Marchwartstrasse 61, 8038 Zürich, Switzerland

Abstract

Cell density is an important factor in all microbiome research, where interactions are of interest. It is also the most important parameter for the operation and control of most biotechnological processes. In the past, cell density determination was often performed offline and manually, resulting in a delay between sampling and immediate data processing, preventing quick action. While there are now some online methods for rapid and automated cell density determination, they are unable to distinguish between the different cell types in bacterial communities. To address this gap, an online automated flow cytometry procedure is proposed for real-time high-resolution analysis of bacterial communities. On the one hand, it allows for the online automated calculation of cell concentrations and, on the other, for the differentiation between different cell subsets of a bacterial community. To achieve this, the OC-300 automation device (onCyt Microbiology, Zürich, Switzerland) was coupled with the flow cytometer CytoFLEX (Beckman Coulter, Brea, USA). The OC-300 performs the automatic sampling, dilution, fixation and 4′,6-diamidino-2-phenylindole (DAPI) staining of a bacterial sample before sending it to the CytoFLEX for measurement. It is demonstrated that this method can reproducibly measure both cell density and fingerprint-like patterns of bacterial communities, generating suitable data for powerful automated data analysis and interpretation pipelines. In particular, the automated, high-resolution partitioning of clustered data into cell subsets opens up the possibility of correlation analysis to identify the operational or abiotic/biotic causes of community disturbances or state changes, which can influence the interaction potential of organisms in microbiomes or even affect the performance of individual organisms.

Funder

European Union’s Horizon 2020 research and innovation program

Helmholtz Integrated Project 7: Tapping Nature’s Potential; project: EBB: ElectroBiorefineries and Biosyntheses

work package 3: Mixed Culture for Biosynthesis

project BitCa

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3