Mathematical Modeling of Clonal Interference by Density-Dependent Selection in Heterogeneous Cancer Cell Lines

Author:

Veith Thomas12ORCID,Schultz Andrew1,Alahmari Saeed3,Beck Richard1,Johnson Joseph4,Andor Noemi12

Affiliation:

1. Moffitt Cancer Center, Integrated Mathematical Oncology, USF Magnolia Drive, Tampa, FL 33612, USA

2. Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33612, USA

3. Department of Computer Science, Najran University, King Abdulaziz Road, Najran 61441, Saudi Arabia

4. Moffitt Cancer Center, Analytic Microscopy Core, USF Magnolia Drive, Tampa, FL 33612, USA

Abstract

Many cancer cell lines are aneuploid and heterogeneous, with multiple karyotypes co-existing within the same cell line. Karyotype heterogeneity has been shown to manifest phenotypically, thus affecting how cells respond to drugs or to minor differences in culture media. Knowing how to interpret karyotype heterogeneity phenotypically would give insights into cellular phenotypes before they unfold temporally. Here, we re-analyzed single cell RNA (scRNA) and scDNA sequencing data from eight stomach cancer cell lines by placing gene expression programs into a phenotypic context. Using live cell imaging, we quantified differences in the growth rate and contact inhibition between the eight cell lines and used these differences to prioritize the transcriptomic biomarkers of the growth rate and carrying capacity. Using these biomarkers, we found significant differences in the predicted growth rate or carrying capacity between multiple karyotypes detected within the same cell line. We used these predictions to simulate how the clonal composition of a cell line would change depending on density conditions during in-vitro experiments. Once validated, these models can aid in the design of experiments that steer evolution with density-dependent selection.

Funder

National Institutes of Health at the National Cancer Institute

Moffitt Cancer Center Evolutionary Therapy Center of Excellence

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3