Adipose-Derived Mesenchymal Stromal Cell Transplantation for Severe Spinal Cord Injury: Functional Improvement Supported by Angiogenesis and Neuroprotection

Author:

Takahashi Ai1,Nakajima Hideaki1ORCID,Kubota Arisa1,Watanabe Shuji1,Matsumine Akihiko1

Affiliation:

1. Department of Orthopaedics and Rehabilitation Medicine, University of Fukui, Fukui 910-1193, Japan

Abstract

Mesenchymal stromal cell transplantation alone is insufficient when motor dysfunction is severe; combination therapy with rehabilitation could improve motor function. Here, we aimed to analyze the characteristics of adipose-derived MSCs (AD-MSCs) and determine their effectiveness in severe spinal cord injury (SCI) treatment. A severe SCI model was created and motor function were compared. The rats were divided into AD-MSC-transplanted treadmill exercise-combined (AD-Ex), AD-MSC-transplanted non-exercise (AD-noEx), PBS-injected exercise (PBS-Ex), and no PBS-injected exercise (PBS-noEx) groups. In cultured cell experiments, AD-MSCs were subjected to oxidative stress, and the effects on the extracellular secretion of AD-MSCs were investigated using multiplex flow cytometry. We assessed angiogenesis and macrophage accumulation in the acute phase. Spinal cavity or scar size and axonal preservation were assessed histologically in the subacute phase. Significant motor function improvement was observed in the AD-Ex group. Vascular endothelial growth factor and C-C motif chemokine 2 expression in AD-MSC culture supernatants increased under oxidative stress. Enhanced angiogenesis and decreased macrophage accumulation were observed at 2 weeks post-transplantation, whereas spinal cord cavity or scar size and axonal preservation were observed at 4 weeks. Overall, AD-MSC transplantation combined with treadmill exercise training improved motor function in severe SCI. AD-MSC transplantation promoted angiogenesis and neuroprotection.

Funder

Grants-in-Aid for Scientific Research of the Ministry of Education of Japan

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3