Transplantation of mesenchymal stem cells for spinal cord injury: a systematic review and network meta-analysis

Author:

Chen Wei-can,Liu Wei-feng,Bai Yu-yan,Zhou Ying-ying,Zhang Yan,Wang Cong-mei,Lin Shu,He He-fanORCID

Abstract

AbstractSpinal cord injury (SCI) is a severe traumatic disease of the central nervous system, with a global prevalence of 236–4187 per million people. This meta-analysis aimed to evaluate the safety and efficacy of mesenchymal stem cells (MSCs) in treating patients with SCI as well as the optimal source and transplantation method of MSCs. PubMed, OVID, Cochrane, Web of Science, and China Biomedical Database were searched up until April 01, 2021. The study was conducted for five endpoints: American Spinal Injury Association (ASIA) motor and sensory score, ASIA grade improvement, Barthel Index (BI), and adverse reactions. Standard meta-analysis and network meta-analysis were performed using Stata 14.0. Eighteen studies with a total of 949 patients, were included in the meta-analysis. Standard meta-analysis showed that MSCs significantly improved ASIA motor score (P < 0.001), sensory score (P < 0.001), ASIA grade (P < 0.001), and BI (P < 0.001) compared to rehabilitation. In addition, in the network meta-analysis, autologous MSCs significantly improved the ASIA motor [MD = 8.01, 95% CI (4.27, 11.76)], sensory score [MD = 17.98, 95% CI (10.04, 25.91)], and BI [MD = 7.69, 95% CI (2.10, 13.29)] compared to rehabilitation. Similarly, compared to rehabilitation, intrathecal injection (IT) of MSCs significantly improved the ASIA motor [MD = 7.97, 95% CI (4.40, 11.53)] and sensory score [MD = 19.60, 95% CI (9.74, 29.46)]. Compared to rehabilitation, however, only the IL of MSCs was associated with more adverse reactions [OR = 17.82, 95% CI (2.48, 128.22)]. According to the results of SUCRA, both autologous MSCs and IT transplantation approaches most improved the neurological function in SCI patients. Cell transplantation using MSCs is effective in patients with SCI and IT of autologous MSCs may be more beneficial.

Funder

Quanzhou Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3