Affiliation:
1. Innovation and Integration Center of New Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2. State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract
Nanomedicine 2.0 refers to the next generation of nanotechnology-based medical therapies and diagnostic tools. This field focuses on the development of more sophisticated and precise nanoparticles (NPs) for targeted drug delivery, imaging, and sensing. It has been established that the nuclear delivery of NP-loaded drugs can increase their therapeutic efficacy. To effectively direct the NPs to the nucleus, the attachment of nuclear localization signals (NLSs) to NPs has been employed in many applications. In this review, we will provide an overview of the structure of nuclear pore complexes (NPCs) and the classic nuclear import mechanism. Additionally, we will explore various nanoparticles, including their synthesis, functionalization, drug loading and release mechanisms, nuclear targeting strategies, and potential applications. Finally, we will highlight the challenges associated with developing nucleus-targeted nanoparticle-based drug delivery systems (NDDSs) and provide insights into the future of NDDSs.
Funder
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, China
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献