Two-Level Blockchain System for Digital Crime Evidence Management

Author:

Kim DonghyoORCID,Ihm Sun-YoungORCID,Son YunsikORCID

Abstract

Digital evidence, such as evidence from CCTV and event data recorders, is highly valuable in criminal investigations, and is used as definitive evidence in trials. However, there are risks when digital evidence obtained during the investigation of a case is managed through a physical hard disk drive until it is submitted to the court. Previous studies have focused on the integrated management of digital evidence in a centralized system, but if a centralized system server is attacked, major operations and investigation information may be leaked. Therefore, there is a need to reliably manage digital evidence and investigation information using blockchain technology in a distributed system environment. However, when large amounts of data—such as evidence videos—are stored in a blockchain, the data that must be processed only within one block before being created increase, causing performance degradation. Therefore, we propose a two-level blockchain system that separates digital evidence into hot and cold blockchains. In the criminal investigation process, information that frequently changes is stored in the hot blockchain, and unchanging data such as videos are stored in the cold blockchain. To evaluate the system, we measured the storage and inquiry processing performance of digital crime evidence videos according to the different capacities in the two-level blockchain system.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Every Crime Leaves a Markhttps://sedaily.com/NewsView/1OMAEK89A4

2. White Paper: A Society Safe from Crime,2019

3. Management from the perspective of the Life Cycle of Digital Evidence;Jung;J. Digit. Forensics,2016

4. Design and Implementation of a Digital Evidence Management Model Based on Hyperledger Fabric;Jeong;J. Inf. Process. Syst.,2020

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3