An Efficient Privacy and Anonymity Setup on Hyperledger Fabric for Blockchain-Enabled Internet of Things (IoT) Devices

Author:

Saad Muhammad1,Haidery Saqib Ali1,Bhandari Aavash1ORCID,Bhutta Muhammad Raheel2ORCID,Park Dong-Joo3,Chung Tae-Sun1ORCID

Affiliation:

1. Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea

2. Department of Electrical and Computer Engineering, University of UTAH Asia Campus, Incheon 21985, Republic of Korea

3. School of Computer Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea

Abstract

The rise in IoT (Internet of Things) devices poses a significant security challenge. Maintaining privacy and ensuring anonymity within the system is a sought-after feature with inevitable trade-offs, such as scalability and increased complexity, making it incredibly challenging to handle. To tackle this, we introduce our proposed work for managing IoT devices using Hyperledger Fabric. We integrated our system on the blockchain with a closed-circuit television (CCTV) security camera fixed at a rental property. The CCTV security camera redirects its feed whenever a new renter walks in. We have introduced the web token for authentication from the renter to the owner. Our contributions include an efficient framework architecture using key invalidation scenarios and token authentication, a novel chain code algorithm, and stealth addresses with modified ring signatures. We performed different analyses to show the system’s throughput and latency through stress testing. We have shown the significant advantages of the proposed architectures by comparing similar existing schemes. Our proposed scheme enhances the security of blockchain-enabled IoT devices and mitigates the single point of failure issue in the existing scheme, providing a robust and reliable solution. Our future work includes scaling it up to cater to the needs of the healthcare system.

Funder

Institute of Information & communications Technology Planning & Evaluation

Korea government

Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3