Adaptive Kriging-Based Heat Production Performance Optimization for a Two-Horizontal-Well Geothermal System

Author:

Liu Haisheng1234,Sun Wan2,Zheng Jun1ORCID,Dou Bin1

Affiliation:

1. Engineering Faculty, China University of Geosciences, Wuhan 430074, China

2. Shanghai Shallow Geothermal Energy Engineering Technology Research Center, Shanghai 200040, China

3. Qinghai Provincial Second Geological Exploration Institute, Xining 810003, China

4. Qinghai Province Core Drilling Engineering Technology Research Center, Xining 810003, China

Abstract

Optimizing heat generation capacity is crucial for geothermal system design and evaluation. Computer simulation is a valuable approach for determining the influence of various parameter combinations on a geothermal system’s ability to produce heat. However, computer simulation evaluations are often computationally demanding since all potential parameter combinations must be examined, posing significant hurdles for heat generation performance evaluation and optimization. This research proposes an adaptive Kriging-based heat generation performance optimization method. Firstly, a two-horizontal-well geothermal system with rectangular multi-parallel fractures is constructed. The heat production performance optimization problem is then established, and the temperature and enthalpy of the outlet water are calculated using computer simulation and Kriging. A parameterized lower confidence bounding sampling scheme (PLCB) is developed to adaptively update Kriging in order to strike a compromise between optimization accuracy and computation burden. The outcomes of the optimization are compared to those of the Kriging-based optimization approach and other common infill options to demonstrate the efficiency of the proposed method. The outlet temperature curve obtained with PLCB-AKO-1 rose for a longer time and the heat generation power curve reached a stable output without a downward trend. According to the Friedman and Wilcoxon signed ranks tests, the PLCB-1-AKO technique is statistically superior to alternative strategies.

Funder

National Key Research and Development Programs of Henan Province

Open Fund of Shanghai Shallow Geothermal Energy Engineering Technology Center

Geological Exploration Project of Qinghai Province Bureau of Geology and Mineral Exploration and Development

Qinghai Provincial Party Committee Talent Work Leading Group

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3