Author:
Goričanec Darko,Ivanovski Igor,Krope Jurij,Urbancl Danijela
Abstract
The article presents an original and innovative technical solution for the exploitation of low-temperature excess heat from hot water boilers that use gas or liquid fuel for the needs of high-temperature heating in buildings or in industry. The primary fuel efficiency used for hot water boilers can be significantly increased by utilizing the excess low-temperature heat of flue gases that are discharged into the environment and thus also reduce CO2 emissions. Hot water systems usually operate at higher temperatures of the heating water, which is transported to the heat consumer via supply pipe, and the cooled heating water is returned to the hot water boiler via the return pipe. For the excess low-temperature heat exploitation of the flue gases from hot water boiler, it is necessary to install a condenser in the flue gas discharge pipe, where condensation of water vapour present in the flue gas heats water or a mixture of water and glycol. The heating water, which is cooled and returned from the heat consumer via the return pipe, is led to the condenser of the high-temperature heat pump, where it is preheated and then led to the hot water boiler, where it is heated to the final temperature. A computer simulation with the Aspen plus software package for the series or parallel connection of high-temperature heat pump to a hot water heating system and the economic analysis of the excess heat exploitation from the flue gases are also performed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference22 articles.
1. Thermodynamic competitiveness of high temperature vapor compression heat pumps for boiler substitution
2. Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the Production of Large Volume Organic Chemicals;Off. J. Eur. Union,2004
3. The European Green Deal,2019
4. Energy Efficiency Directive;Parliament,2012
5. Thermo-economic comparison of coal-fired boiler-based and groundwater-heat-pump based heating and cooling solution – A case study on a greenhouse in Hubei, China
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献