An FPGA-Based Data Acquisition System with Embedded Processing for Real-Time Gas Sensing Applications

Author:

Enemali Godwin1,Gibson Ryan M.2

Affiliation:

1. Department of Electrical and Electronic Engineering, Glasgow Caledonian University, Glasgow G4 0BA, UK

2. Division for Computing, University of West of Scotland, Paisley PA1 2BE, UK

Abstract

Real-time gas sensing based on wavelength modulation spectroscopy (WMS) has been widely adopted for several gas sensing applications. It is attractive for its accurate, non-invasive, and fast determination of critical gas parameters such as concentration, temperature, and pressure. To implement real-time gas sensing, data acquisition and processing must be implemented to accurately extract harmonics of interest from transmitted laser signals. In this work, we present an FPGA-based data acquisition architecture with embedded processing capable of achieving both real-time and accurate gas detection. By leveraging real-time processing on-chip, we minimised the data transfer bandwidth requirement, hence enabling better resolution of data transferred for high-level processing. The proposed architecture has a significantly lower bandwidth requirement compared to both the conventional offline processing architecture and the standard I-Q architecture. Specifically, it is capable of reducing data transfer overhead by 25% compared to the standard I-Q method, and it only requires a fraction of the bandwidth needed by the offline processing architecture. The feasibility of the proposed architecture is demonstrated on a commercial off-the-shelf SoC board, where measurement results show that the proposed architecture has better accuracy compared to the standard I-Q demodulation architecture for the same signal bandwidth. The proposed DAQ system has potential for more accurate and fast real-time gas sensing.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3