Abstract
A ground-based, integrated path, differential absorption (IPDA) light detection device capable of measuring multiple greenhouse gas (GHG) species in the atmosphere is presented. The device was developed to monitor greenhouse gas concentrations in small-scale areas with high emission activities. It is equipped with two low optical power tunable diode lasers in the near-infrared spectral range for the atmospheric detection of carbon dioxide, methane, and water vapors (CO2, CH4 and H2O). The device was tested with measurements of background concentrations of CO2 and CH4 in the atmosphere (Crete, Greece). Accuracies in the measurement retrievals of CO2 and CH4 were estimated at 5 ppm (1.2%) and 50 ppb (2.6%), respectively. A method that exploits the intensity of the recorded H2O absorption line in combination with weather measurements (water vapor pressure, temperature, and atmospheric pressure) to calculate the GHG concentrations is proposed. The method eliminates the requirement for measuring the range of the laser beam propagation. Accuracy in the measurement of CH4 using the H2O absorption line is estimated at 90 ppb (4.8%). The values calculated by the proposed method are in agreement with those obtained from the differential absorption LiDAR equation (DIAL).
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献