ADPSCAN: Structural Graph Clustering with Adaptive Density Peak Selection and Noise Re-Clustering

Author:

Du Xinyu1ORCID,Li Fangfang1,Li Xiaohua1,Yu Ge1ORCID

Affiliation:

1. School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China

Abstract

Structural graph clustering is a data analysis technique that groups nodes within a graph based on their connectivity and structural similarity. The Structural graph clustering SCAN algorithm, a density-based clustering method, effectively identifies core points and their neighbors within areas of high density to form well-defined clusters. However, the clustering quality of SCAN heavily depends on the input parameters, ϵ and μ, making the clustering results highly sensitive to parameter selection. Different parameter settings can lead to significant differences in clustering results, potentially compromising the accuracy of the clusters. To address this issue, a novel structural graph clustering algorithm based on the adaptive selection of density peaks is proposed in this paper. Unlike traditional methods, our algorithm does not rely on external parameters and eliminates the need for manual selection of density peaks or cluster centers by users. Density peaks are adaptively identified using the generalized extreme value distribution, with consideration of the structural similarities and interdependencies among nodes, and clusters are expanded by incorporating neighboring nodes, enhancing the robustness of the clustering process. Additionally, a distance-based structural similarity method is proposed to re-cluster noise nodes to the correct clusters. Extensive experiments on real and synthetic graph datasets validate the effectiveness of our algorithm. The experiment results show that the ADPSCAN has a superior performance compared with several state-of-the-art (SOTA) graph clustering methods.

Publisher

MDPI AG

Reference26 articles.

1. Scan++ efficient algorithm for finding clusters, hubs and outliers on large-scale graphs;Shiokawa;Proc. VLDB Endow.,2015

2. M3FuNet: An unsupervised multivariate feature fusion network for hyperspectral image classification;Chen;IEEE Trans. Geosci. Remote. Sens.,2024

3. A flight arrival time prediction method based on cluster clustering-based modular with deep neural network;Deng;IEEE Trans. Intell. Transp. Syst.,2023

4. Functional cartography of complex metabolic networks;Guimera;Nature,2005

5. Community detection in graphs;Santo;Phys. Rep.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3