SCAN++

Author:

Shiokawa Hiroaki1,Fujiwara Yasuhiro2,Onizuka Makoto3

Affiliation:

1. NTT Software Innovation Center, Musashino, Tokyo, Japan and University of Tsukuba, Tsukuba, Ibaraki, Japan

2. NTT Software Innovation Center, Musashino, Tokyo, Japan

3. Osaka University, Suita, Osaka, Japan

Abstract

Graph clustering is one of the key techniques for understanding the structures present in graphs. Besides cluster detection, identifying hubs and outliers is also a key task, since they have important roles to play in graph data mining. The structural clustering algorithm SCAN , proposed by Xu et al. , is successfully used in many application because it not only detects densely connected nodes as clusters but also identifies sparsely connected nodes as hubs or outliers. However, it is difficult to apply SCAN to large-scale graphs due to its high time complexity. This is because it evaluates the density for all adjacent nodes included in the given graphs. In this paper, we propose a novel graph clustering algorithm named SCAN ++. In order to reduce time complexity, we introduce new data structure of directly two-hop-away reachable node set (DTAR). DTAR is the set of two-hop-away nodes from a given node that are likely to be in the same cluster as the given node. SCAN++ employs two approaches for efficient clustering by using DTARs without sacrificing clustering quality. First, it reduces the number of the density evaluations by computing the density only for the adjacent nodes such as indicated by DTARs. Second, by sharing a part of the density evaluations for DTARs, it offers efficient density evaluations of adjacent nodes. As a result, SCAN++ detects exactly the same clusters, hubs, and outliers from large-scale graphs as SCAN with much shorter computation time. Extensive experiments on both real-world and synthetic graphs demonstrate the performance superiority of SCAN++ over existing approaches.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3