Spatio-Temporal Machine Learning Analysis of Social Media Data and Refugee Movement Statistics

Author:

Havas ClemensORCID,Wendlinger Lorenz,Stier JulianORCID,Julka Sahib,Krieger Veronika,Ferner CorneliaORCID,Petutschnig AndreasORCID,Granitzer MichaelORCID,Wegenkittl Stefan,Resch BerndORCID

Abstract

In 2015, within the timespan of only a few months, more than a million people made their way from Turkey to Central Europe in the wake of the Syrian civil war. At the time, public authorities and relief organisations struggled with the admission, transfer, care, and accommodation of refugees due to the information gap about ongoing refugee movements. Therefore, we propose an approach utilising machine learning methods and publicly available data to provide more information about refugee movements. The approach combines methods to analyse the textual, temporal and spatial features of social media data and the number of arriving refugees of historical refugee movement statistics to provide relevant and up to date information about refugee movements and expected numbers. The results include spatial patterns and factual information about collective refugee movements extracted from social media data that match actual movement patterns. Furthermore, our approach enables us to forecast and simulate refugee movements to forecast an increase or decrease in the number of incoming refugees and to analyse potential future scenarios. We demonstrate that the approach proposed in this article benefits refugee management and vastly improves the status quo.

Funder

Federal Ministry of Agriculture, Regions and Tourism

Austrian Science Fund

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference69 articles.

1. Asylum and First Time Asylum Applicants-Annual Aggregated Data (Rounded) [Internet] https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tps00191&plugin=1

2. Movements upon movements: Refugee and activist struggles to open the Balkan route to Europe

3. Migrationsdruck durch Flüchtlinge: Die Südostbayerischen Grenzräume am Ende der Balkanroute 2015–2016;Weber,2018

4. Human sensors;Kostakos,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3