Abstract
Twitter location inference methods are developed with the purpose of increasing the percentage of geotagged tweets by inferring locations on a non-geotagged dataset. For validation of proposed approaches, these location inference methods are developed on a fully geotagged dataset on which the attached Global Navigation Satellite System coordinates are used as ground truth data. Whilst a substantial number of location inference methods have been developed to date, questions arise pertaining the generalizability of the developed location inference models on a non-geotagged dataset. This paper proposes a high precision location inference method for inferring tweets’ point of origin based on location mentions within the tweet text. We investigate the influence of data selection by comparing the model performance on two datasets. For the first dataset, we use a proportionate sample of tweet sources of a geotagged dataset. For the second dataset, we use a modelled distribution of tweet sources following a non-geotagged dataset. Our results showed that the distribution of tweet sources influences the performance of location inference models. Using the first dataset we outweighed state-of-the-art location extraction models by inferring 61.9%, 86.1% and 92.1% of the extracted locations within 1 km, 10 km and 50 km radius values, respectively. However, using the second dataset our precision values dropped to 45.3%, 73.1% and 81.0% for the same radius values.
Funder
Austria Research Promotion Agency
Publisher
Public Library of Science (PLoS)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献