A Multi-DoF Prosthetic Hand Finger Joint Controller for Wearable sEMG Sensors by Nonlinear Autoregressive Exogenous Model

Author:

Gao Zhaolong,Tang Rongyu,Huang Qiang,He Jiping

Abstract

The loss of mobility function and sensory information from the arm, hand, and fingertips hampers the activities of daily living (ADL) of patients. A modern bionic prosthetic hand can compensate for the lost functions and realize multiple degree of freedom (DoF) movements. However, the commercially available prosthetic hands usually have limited DoFs due to limited sensors and lack of stable classification algorithms. This study aimed to propose a controller for finger joint angle estimation by surface electromyography (sEMG). The sEMG data used for training were gathered with the Myo armband, which is a commercial EMG sensor. Two features in the time domain were extracted and fed into a nonlinear autoregressive model with exogenous inputs (NARX). The NARX model was trained with pre-selected parameters using the Levenberg–Marquardt algorithm. Comparing with the targets, the regression correlation coefficient (R) of the model outputs was more than 0.982 over all test subjects, and the mean square error was less than 10.02 for a signal range in arbitrary units equal to [0, 255]. The study also demonstrated that the proposed model could be used in daily life movements with good accuracy and generalization abilities.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050

2. Upper limb prosthesis use and abandonment

3. On the design of robotic hands for brain–machine interface

4. Power Assist System HAL-3 for Gait Disorder Person BT—Computers Helping People with Special Needs;Kawamoto,2002

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3