Intelligent Fault Diagnosis Method through ACCC-Based Improved Convolutional Neural Network

Author:

Zhang Chao1,Huang Qixuan1,Yang Ke2,Zhang Chaoyi3

Affiliation:

1. Department of Integrated Technology and Control Engineering, School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. Beijing Aerospace Systems Engineering Research Institute, Beijing 100076, China

3. School of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Fault diagnosis plays an important role in improving the safety and reliability of complex equipment. Convolutional neural networks (CNN) have been widely used to diagnose faults due to their powerful feature extraction and learning capabilities. In practical industrial applications, the obtained signals always are disturbed by strong and highly non-stationary noise, so the timing relationships of the signals should be highlighted more. However, most CNN-based fault diagnosis methods directly use a pooling layer, which may corrupt the timing relationship of the signals easily. More importantly, due to a lack of an attention mechanism, it is difficult to extract deep informative features from noisy signals. To solve the shortcomings, an intelligent fault diagnosis method is proposed in this paper by using an improved convolutional neural network (ICNN) model. Three innovations are developed. Firstly, the receptive field is used as a guideline to design diagnosis network structures, and the receptive field of the last layer is close to the length of the original signal, which can enable the network to fully learn each sample. Secondly, the dilated convolution is adopted instead of standard convolution to obtain larger-scale information and preserves the internal structure and temporal relation of the signal when performing down-sampling. Thirdly, an attention mechanism block named advanced convolution and channel calibration (ACCC) is presented to calibrate the feature channels, thus the deep informative features are distributed in larger weights while noise-related features are effectively suppressed. Finally, two experiments show the ICNN-based fault diagnosis method can not only process strong noise signals but also diagnose early and minor faults. Compared with other methods, it achieves the highest average accuracy at 94.78% and 90.26%, which are 6.53% and 7.70% higher than the CNN methods, respectively. In complex machine bearing failure conditions, this method can be used to better diagnose the type of failure; in voice calls, this method can be used to better distinguish between voice and noisy background sounds to improve call quality.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference35 articles.

1. Bearing performance degradation assessment using long short-term memory recurrent network;Zhang;Comput. Ind.,2019

2. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches;Gao;IEEE Trans. Ind. Electron.,2015

3. A survey of fault diagnosis and fault-tolerant techniques—Part II: Fault diagnosis with knowledge-based and hybrid/active approaches;Zhiwei;IEEE Trans. Ind. Electron.,2015

4. Deep learning;LeCun;Nature,2015

5. Deep learning in neural networks: An overview;Schmidhuber;Neural Netw.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3