A Bearing Fault Diagnosis Method under Small Sample Conditions Based on the Fractional Order Siamese Deep Residual Shrinkage Network

Author:

Li Tao12345ORCID,Wu Xiaoting12,Luo Zhuhui12,Chen Yanan3,He Caichun2,Ding Rongjun4,Zhang Changfan1,Yang Jun2

Affiliation:

1. College of Railway Transportation, Hunan University of Technology, Zhuzhou 412007, China

2. Zhuzhou Times New Material Technology Co, Ltd., Zhuzhou 412007, China

3. CRRC Zhuzhou Institute Co., Ltd., Zhuzhou 412001, China

4. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

5. The State Key Laboratory of Heavy-Duty and Express High-Power Electric Locomotive, Zhuzhou 412001, China

Abstract

A bearing fault is one of the major causes of rotating machinery faults. However, in real industrial scenarios, the harsh and complex environment makes it very difficult to collect sufficient fault data. Due to this limitation, most of the current methods cannot accurately identify the fault type in cases with limited data, so timely maintenance cannot be conducted. In order to solve this problem, a bearing fault diagnosis method based on the fractional order Siamese deep residual shrinkage network (FO-SDRSN) is proposed in this paper. After data collection, all kinds of vibration data are first converted into two-dimensional time series feature maps, and these feature maps are divided into the same or different types of fault sample pairs. Then, a Siamese network based on the deep residual shrinkage network (DRSN) is used to extract the features of the fault sample pairs, and the fault type is determined according to the features. After that, the contrastive loss function and diagnostic loss function of the sample pairs are combined, and the network parameters are continuously optimized using the fractional order momentum gradient descent method to reduce the loss function. This improves the accuracy of fault diagnosis with a small sample training dataset. Finally, four small sample datasets are used to verify the effectiveness of the proposed method. The results show that the FO-SDRSN method is superior to other advanced methods in terms of training accuracy and stability under small sample conditions.

Funder

National Natural Science Foundation of China

State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3