State Estimation of Membrane Water Content of PEMFC Based on GA-BP Neural Network

Author:

Huo Haibo1ORCID,Chen Jiajie1,Wang Ke1,Wang Fang2ORCID,Jin Guangzhe1,Chen Fengxiang3

Affiliation:

1. Shanghai Engineering Research Center of Marine Renewable Energy, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

2. Shanghai Engineering Research Center of Hadal Science and Technology, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

3. School of Automotive Studies, Tongji University, Shanghai 201804, China

Abstract

Too high or too low water content in the proton exchange membrane (PEM) will affect the output performance of the proton exchange membrane fuel cell (PEMFC) and shorten its service life. In this paper, the mathematical mechanisms of cathode mass flow, anode mass flow, water content in the PEM and stack voltage of the PEMFC are deeply studied. Furthermore, the dynamic output characteristics of the PEMFC under the conditions of flooding and drying membrane are reported, and the influence of water content in PEM on output performance of the PEMFC is analyzed. To effectively diagnose membrane drying and flooding faults, prolong their lifespan and thus to improve operation performance, this paper proposes the state assessment of water content in the PEM based on BP neural network optimized by genetic algorithm (GA). Simulation results show that compared with LS-SVM, GA-BP neural network has higher estimation accuracy, which lays a foundation for the fault diagnosis, life extension and control scheme design of the PEMFC.

Funder

Shanghai Pujiang Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3