Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure

Author:

Khan Md Modassir1,Kadian Arun Kumar1,Sharma Rabindra Prasad1,Hasnain S M Mozammil2ORCID,Mohamed Ahmed3ORCID,Ragab Adham E.4ORCID,Zare Ali5,Pandey Shatrudhan6ORCID

Affiliation:

1. Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India

2. Faculty of Engineering and Applied Science, Usha Martin University, Ranchi 835103, India

3. Department of Structural Engineering and Construction Management, Future University, New Cairo City 11835, Egypt

4. Department of Industrial Engineering, College of Engineering, King Saud University, Post Box 800, Riyadh 11421, Saudi Arabia

5. School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3220, Australia

6. Department of Production and Industrial Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India

Abstract

Diesel emissions have resulted in air pollution, which is harmful to the sustaining of life. The concerns of energy security and poor air quality have propelled researchers to seek alternate and environment-friendly fuels for the transport sector, keeping diesel engines at the core. Thus, a quaternary blend (diesel-biodiesel-vegetable oil-alcohol) proves to be a promising key to address the above problems. This experimental work focuses aims on investigating the performance and emissions of a diesel engine powered with quaternary blends by changing the fuel injection pressure. The quaternary blend comprised of diesel, neem biodiesel, pure neem oil, and decanol was used to prepare quaternary blends of varied volumetric proportions. This study involves the testing of quaternary blends at varied fuel injection pressure (IP) ranging from 400–500 bar. The engine load varied from 10 Nm to 20 Nm, and the shaft speed was constant at 2000 rpm. It was evident from the outcomes that the least DBODec45 resulted in minimum carbon monoxide (CO) and un-burnt hydrocarbon (UHC) emissions, which were obtained to be 83.33% and 54.5% less than diesel at 500 bar and at a load of 10 Nm and 20 Nm, respectively. Moreover, the blend containing 45% of decanol led to the lowest NOx and smoke concentrations. The lowest brake-specific fuel consumption (BSFC) was achieved at 500 bar and 20 Nm for the same blend and was found to be 3.22% higher than diesel. Moreover, at the same IP and load, DBODec45 led to highest BTE, which was 3.26% lower than pure diesel.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3