Scan Matching-Based Particle Filter for LIDAR-Only Localization

Author:

Adurthi Nagavenkat1ORCID

Affiliation:

1. Mechanical and Aerospace Engineering, University of Alabama in Huntsville, 301 Sparkman Dr., Alabama, AL 35824, USA

Abstract

This paper deals with the development of a localization methodology for autonomous vehicles using only a 3D LIDAR sensor. In the context of this paper, localizing a vehicle in a known 3D global map of the environment is equivalent to finding the vehicle’s global 3D pose (position and orientation), in addition to other vehicle states, within this map. Once localized, the problem of tracking uses the sequential LIDAR scans to continuously estimate the states of the vehicle. While the proposed scan matching-based particle filters can be used for both localization and tracking, in this paper, we emphasize only the localization problem. Particle filters are a well-known solution for robot/vehicle localization, but they become computationally prohibitive as the states and the number of particles increases. Further, computing the likelihood of a LIDAR scan for each particle is in itself a computationally expensive task, thus limiting the number of particles that can be used for real-time performance. To this end, a hybrid approach is proposed that combines the advantages of a particle filter with a global-local scan matching method to better inform the resampling stage of the particle filter. We also use a pre-computed likelihood grid to speed up the computation of LIDAR scan likelihoods. Using simulation data of real-world LIDAR scans from the KITTI datasets, we show the efficacy of the proposed approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3