Deep-Neural-Network-Based Modelling of Longitudinal-Lateral Dynamics to Predict the Vehicle States for Autonomous Driving

Author:

Nie Xiaobo,Min Chuan,Pan YongjunORCID,Li Ke,Li Zhixiong

Abstract

Multibody models built in commercial software packages, e.g., ADAMS, can be used for accurate vehicle dynamics, but computational efficiency and numerical stability are very challenging in complex driving environments. These issues can be addressed by using data-driven models, owing to their robust generalization and computational speed. In this study, we develop a deep neural network (DNN) based model to predict longitudinal-lateral dynamics of an autonomous vehicle. Dynamic simulations of the autonomous vehicle are performed based on a semirecursive multibody method for data acquisition. The data are used to train and test the DNN model. The DNN inputs include the torque applied on wheels and the vehicle’s initial speed that imitates a double lane change maneuver. The DNN outputs include the longitudinal driving distance, the lateral driving distance, the final longitudinal velocities, the final lateral velocities, and the yaw angle. The predicted vehicle states based on the DNN model are compared with the multibody model results. The accuracy of the DNN model is investigated in detail in terms of error functions. The DNN model is verified within the framework of a commercial software package CarSim. The results demonstrate that the DNN model predicts accurate vehicle states in real time. It can be used for real-time simulation and preview control in autonomous vehicles for enhanced transportation safety.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3