χ2-BidLSTM: A Feature Driven Intrusion Detection System Based on χ2 Statistical Model and Bidirectional LSTM

Author:

Imrana YakubuORCID,Xiang YanpingORCID,Ali LiaqatORCID,Abdul-Rauf ZaharawuORCID,Hu Yu-Chen,Kadry SeifedineORCID,Lim SangsoonORCID

Abstract

In a network architecture, an intrusion detection system (IDS) is one of the most commonly used approaches to secure the integrity and availability of critical assets in protected systems. Many existing network intrusion detection systems (NIDS) utilize stand-alone classifier models to classify network traffic as an attack or as normal. Due to the vast data volume, these stand-alone models struggle to reach higher intrusion detection rates with low false alarm rates( FAR). Additionally, irrelevant features in datasets can also increase the running time required to develop a model. However, data can be reduced effectively to an optimal feature set without information loss by employing a dimensionality reduction method, which a classification model then uses for accurate predictions of the various network intrusions. In this study, we propose a novel feature-driven intrusion detection system, namely χ2-BidLSTM, that integrates a χ2 statistical model and bidirectional long short-term memory (BidLSTM). The NSL-KDD dataset is used to train and evaluate the proposed approach. In the first phase, the χ2-BidLSTM system uses a χ2 model to rank all the features, then searches an optimal subset using a forward best search algorithm. In next phase, the optimal set is fed to the BidLSTM model for classification purposes. The experimental results indicate that our proposed χ2-BidLSTM approach achieves a detection accuracy of 95.62% and an F-score of 95.65%, with a low FAR of 2.11% on NSL-KDDTest+. Furthermore, our model obtains an accuracy of 89.55%, an F-score of 89.77%, and an FAR of 2.71% on NSL-KDDTest−21, indicating the superiority of the proposed approach over the standard LSTM method and other existing feature-selection-based NIDS methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference62 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3