Abstract
Plasmonic gratings provide effective photon management techniques in thin-film solar cells, capable of extending the optical thickness of the solar cell’s active layer. However, the ultra-broadband nature of such application makes an optimal design of the grating structure quite challenging, since a fully periodic grating operates only in specific spectral ranges. To achieve a more broadband design, semiperiodicity is introduced, which, due to having controllable disorder, is an apt solution in broadband optical applications. In this work, semiperiodic double gratings as a broadband photon management technique are introduced in order to improve the optical absorption of c-Si thin-film solar cells, and optimized through numerical structural optimization. Physical parameters of both front and back gratings are determined taking the spectrally integrated optical absorption as the figure of merit and subsequently a semiperiodic double grating is established through adding defects to the fully periodic structure. It is shown that such semiperiodic structure is capable of enhancing the spectrally integrated optical absorption 88.6 % compared to a reference structure without gratings.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献