Light Reflection Loss Reduction by Nano-Structured Gratings for Highly Efficient Next-Generation GaAs Solar Cells

Author:

Das NarottamORCID,Chandrasekar Devanandh,Nur-E-Alam MohammadORCID,K. Khan M. Masud

Abstract

This paper mainly focuses on increasing the conversion efficiency of GaAs solar cells by reducing the light reflection losses. The design of nano-structured gratings and their light trapping performance are modelled and optimised by using the finite-difference time-domain (FDTD) method. The sunlight directly impinges on the solar panel or cells, then a portion of the incident sunlight reflects back to the air from the surface of the panel, thus leading to a reduction in the light absorption capacity of the solar cells. In order to proliferate the light absorption capacity of solar cells nano-grating structures are employed, as they are highly capable of capturing the incident sunlight compared to a conventional (or flat type) solar cell, which results in generating more electrical energy. In this study, we design three different types of nano-grating structures, optimise their parameters and their performance in light capturing capacity. From the simulation results, we confirm that that it is possible to reduce light reflection losses up to 27%, by using the nano-grating structures, compared to conventional type solar cells. This reduction of reflection losses helps to improve the conversion efficiency of next-generation GaAs solar cells significantly for a sustainable green Earth.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference73 articles.

1. United Nations, Department of Economics and Social Affairshttps://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html

2. Renewistanhttp://www.wired.com/beyond_the_beyond/2009/01/renewistan/

3. IRENA’s Global Renewables Outlook: Energy Transformation 2050https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3